Do podcast and music compete with one another? Understanding users' audio streaming habits

Ang Li University of Pittsburgh
Alice Y Wang, Zahra Nazari, Praveen Chandar, Benjamin Carterette, Spotify Interned 2019 summer with Spotify Tech Research

OUTLINE

-Motivation and research questions

- Methodology
- Results
- Conclusion

Podcasts have become one of the fastest growing online audio streaming media

- Podcast: portable and on-demand forms of spoken-word audio content
- As of April 2019, there are over 29M episodes of Podcasts

Podcasting Listening
TOTAL U.S. POPULATION 12+

Weekly Podcast Listening

The popularity of podcasts has created great demand

Market as of 2018:
e> 525 K active podcast shows, >18.5 billion downloads

- Several music-focused platforms started to expand services by adding podcast content alongside music
V Satisfy user demand by providing diverse content

Let the podcasts come to you.
© ${ }^{\text {spotitiy }}$

Incorporating podcasts introduces new challenges for these platforms

* The functional use for podcasts and music listening may largely overlap
* Two types of content may compete for the limited amount of time that users may allocate for daily audio streaming.

Music: entertainment, pleasure, passing time, education, facilitate social interactions
Podcasts: entertainment, relaxation, education.
One of the most popular topics among podcast consumers is music
■ As a result, incorporating podcast listening to music streaming may influence and change the original way users consume music

Necessary for these platforms to understand the influence and users' listening habits

- It is necessary for platforms to understand:

What is the effects of injecting new type of audio content to users' listening habits
※ How users' listening habits change before vs. after the arrival of new content

- ... provide best support for their users

『 Content consumers: support them with a better recommender system i.e. provide the right content at the right time

■ Content creators: make their shows more tailored based on users listening habits

IN THE CURRENT STUDY

We focus on music listeners who incorporate podcasts to their listening activities for the first time, and ask:

RQ1. Would users' music listening habits change as a result of adopting podcast listening?
RQ2. a. For music users who have adopted podcast listening for the first time, what are their listening habits for podcasts vs. music? b. What are the content of podcasts they consume, especially before the adoption?
RQ3. When a user starts a new listening session, can we predict whether s/he will listen to a podcast based on their listening habits?

USING Spotify AS OUR RESEARCH PLATFORM

- One of the most popular (271M users) online audio streaming platforms
- Traditionally focus on music streaming
- Started to provide Podcast content in recent years

Define 3 levels of podcast engagement [based on internal user study]:
> 1 hour for a Podcast show
>3 episodes of that show

Only listened to music

Just started listening to podcasts, still explore, seek Podcasts to listen to

Podcast Adopters

Have passed a threshold level of streaming podcast, a proxy for assuming that they start to incorporate podcast into their listening habits

Adding podcasts may influence music listening?

Pairs of similar users Controls \& Treatments - similar $P($ treated $)$

Received
treatment

[^0]
PAIRS OF SIMILAR USERS: Music Only VS. Podcast Adopters

Pool of active users from May (US)

```
Treatment:
convert to Adopter
```


Adopters

01/01 03/01

| 60 days | 60 days | 05/01 60 days |
| :--- | :--- | :--- | :--- |
| Music | Music +
 Pod Seeker | Music +
 Podcast Adopter |

Treatment users:
270K users
Music only

RO1: Would users' music listening habits change as a

Control users:

Never listen to Podcast

Podcast Adopter:

RQ2a. What are their listening habits for podcasts vs. music?

- When do they listen to What type of content (i.e. podcasts vs. music)?

PAIRS OF SIMILAR USERS: Seekers VS. Adopters

Pool of active users from May (US)

Podcast Adopter:

RQ3. Predict: when a user
launch a new session, whether he/she will listen to Podcast?

Never converted to adopters
Examining the seeking period for both groups:
RQ2b. What are the content of podcasts they consume, especially before the adoption? - differences on listened show types for adopters vs. seekers?

PROPENSITY SCORE MATCHING TO FIND SIMILAR PAIRS

Music listening
behavior before listen to Podcast

Music

16 Confounds Xi:

Gender, age
Registration
Music streaming behavior:

- Overall - streams/time
- Dayparts
- Weekdays/Weekend
- \# of artists
- \# of tracks

Estimate Propensity score:

$$
\pi_{i}:=\pi\left(X_{i}\right)=\operatorname{Pr}\left(T_{i}=1 \mid X_{i}\right) .
$$

Match
Difference-in-difference
= changes in outcomes over time
between the intervention group and the control group

PROPENSITY SCORE: Before VS. After MATCHING

- We are able to match each treatment user with a control user based on their propensity scores
- After matching, the distribution of propensity scores for treatment and control groups overlapped

Matching: 270K treatment 270K control

RQ1: Will users' Music listening habits change as a result of adding Podcast listening?

Users music listening habits stay almost the same

Music streaming duration:

- After podcasts were adopted, users spent just 1% shorter time (than before) listening to music

Control users:
Music only
Treatment users:
Podcast adopters

- Had similar findings for music listening frequency, please refer to paper for details

Users add additional time in listening podcasts

Total streaming duration:

- After podcasts were adopted, users spent 20\% (at most) longer time streaming in platform than before

_ Control users: Music only

Treatment users: Podcast adopters

RQ2a:
Podcast Vs. MusicD. both play unique role - very different listening habits

Music listening is a daily activity;
 Vs. Podcast listening is a weekly activity

Weekly: \# of active days listened to music

Music listening is a daily activity
In average, 5-6 Music active days per week

Weekly: \# of days listened to Podcast

Podcast listening is a weekly activity In average, 2 Podcast active days per week

Podcast Adopters: Listening frequency across a Week

Day of Week - listening frequency
\times Podcast \times Music

0\% Monday Tuesday Wednesday		Thursday	Friday	Saturday	Sunday

Podcast Adopters: Listening frequency across a Day

Listening distribution
\times music_count \times podcast_count

Podcast Adopters: Different shows Vs. Day of Week

Day of Week Vs. Show Types

Podcast listening:
No difference for topics across different day of a week

Podcast Adopters: When do they listen to different shows?

Informational shows

- LifestyleHealth - Educational - BusinessTechnology - NewsPolitics - - MusicListening

Compare to Music listening
\rightarrow Informational show streaming peaks on early Morning

Entertainment shows

Entertainment show streamings' trend is more similar to Music listening

Vs.

RO2b: Consumed Podcast Content:

Compared to seekers, what are the podcast show types that adopters consumed, especially before the conversion?

Shows watched during seeking period for both groups

Compared to seekers,

Adopters tend to

Listen significantly more

- Sports, Stories, Comedy, True Crime

Listen less

- Music, Art, Health
- Educational, News, Business

The streamed show types in users' podcasts seeking period can be very important - there are certain show types are more attractive to users who have adopted podcast listening

The streamed show types during seeking period are strong predictors for conversion of Podcast adopters

- Retrieve only the first day activities of podcast listening for users from two groups (seekers, adopters)
- Predict a user's membership - who will become podcast adopters eventually?

Features: extracted based on users' first day activities of Podcast listening

- Show types: \# of Stories, Comedy, True Crime, Music, Education, etc
- \rightarrow Referral types: (the stream is referred from) a browse, search, home, library
- \rightarrow Activity: \# streams, \# shows, \# episodes

Data: ~500K users from two groups (seekers, adopters)

- Excluded users who completed conversion within their first day
- Training data: 70\%; Test data: 30\%

Show types are important in all predictions

- Logistic regression in predicting user's membership
- Iteratively add features and check the feature prediction power

Features	Training model accuracy	Testing model accuracy	Top 3 Predictive Features
Show types			$\mathbf{6 8 . 8 0 \%}$

- Including ONLY Show types features, the model can already achieve the accuracy rate as 68.8%.
- Adding referral types features and users' activities features, the model improves only 2%
- Across all three models, the show types features have consistently been identified as top predictors

SO FAR WE UNDERSTAND

Although there is a mild competition, Podcast and Music are both important and do not substitute for one another: users open a new time window listen to Podcasts

Daily activity: 5-6 active days per week

Entertainment:

- More likely to happen during Evening
- On weekends, Peak on Friday

Weekly activity: 1-2 active days per week

Information/Education:

- More likely to happen during Early morning, for informational types of shows
- On weekdays, Peak on Wednesday

Consumed Podcast Content during Seelking period is important:
There are certain show types that have lower entry barriers for Podcast listening show types are strong predictors of the user conversion

RQ3: Prediction:

When a user starts a new listening session, will she/he listen to a podcast?

SESSION LISTENING PREDICTION

Session Data:

- A session: idle time > 10 mins
- 10% positive sessions (have Podcast listening)

Features (X):

Target (Y):

Current session

- Podcast listening?

Unbalanced:
10\% Podcast
listening session

WILL USER LISTEN TO PODCAST IN THIS SESSION?

5 folds cross validation at the user level:

- Make sure that sessions generated from one user will not appear in different folders
- Avoid potential issues such as predicting past events based on the future

	Logistic regression [mean, std]	Random Forest [mean, std]
User features + the last 1 session	Train_f1: $[0.363,0.0135]$ Test_f1: $[0.361,0.0191]$	$\begin{aligned} & \text { Train_f1: }[0.536,0.0141] \\ & \text { Test_f1: }[0.534,0.0323] \end{aligned}$
+ current time	$\begin{aligned} & \text { Train_f1: }[0.404,0.0134] \\ & \text { Test f1: }[0.402,0.0206] \end{aligned}$	$\begin{aligned} & \text { Train_f1: }[0.563,0.0143] \\ & \text { Test_f1: }[0.561,0.0343] \end{aligned}$
+ so far for today	Train_f1: $[0.413,0.0123]$ Test_f1: $[0.411,0.0258]$	Train_f1: [0.590, 0.0195] Test_f1: [0.589, 0.0370]
+ so far for this week	$\begin{aligned} & \text { Train_f1: }[0.439,0.0130] \\ & \text { Test_f1: }[0.437,0.0301] \end{aligned}$	Train_f1: $[0.601,0.012]$ Test_f1: $[0.599,0.026]$
- Logistic regression with [User features + the last 1 session] as a baseline model Iteratively add features and check the model performance, best model has mean F1=		

LSTM using past 7 sessions demonstrates better performance

Model:

1. LSTM layer with dimension of hidden states $=150$
2.A dropout layer (rate $=0.2$) to avoid overfitting 3.Dense layer for final output

	Train $[$ mean, std $]$	Test $[$ mean, std $]$
Recall	$[0.671,0.021]$	$[0.666,0.032]$
Precision	$[0.828,0.013]$	$[0.825,0.027]$
F1	$[0.741,0.011]$	$[0.737,0.027]$
Accuracy	$[0.963,0.001]$	$[0.962,0.002]$

S:t-7 S:t-6 S:t-5 S:t-4 S:t-3 S:t-2 S:t-1

Conclusion

WHAT WE STILL DON'T KNOW ...

1. Causal inference: only accounted for observable confounders; Things may happen outside Spotify
2. Our observation window is only 2 months after conversion - the observed behavior maybe related to the novelty of the experiences
3. Our definition for "Podcast Adopters" is based on a threshold level of user engagement with Podcast - there can be potential selection bias
4. The listening habits discovered in the current study may be caused by inherent differences in the two media forms i.e. users listen to musics repeatedly but listen to podcasts only when new episodes are released.

MAIN TAKEAWAYS:

Podcast and Music are NOT substitutable with one another:

- Users open another time window (20\% longer streaming time per week) to listen to podcasts.

Podcast and Music both play important and unique roles:

- Users demonstrate different listening habits
- Music: daily activities, during evening/night, weekends
- Podcast: weekly activities, during morning, weekdays, and for information
- The Podcast Content consumed during Seeking period is important: There are certain show types that have lower entry barriers for Podcast listening

Finally, using the above results to create input features to a machine learning model, a podcast listening session is predictable with high accuracy rate

Spotify

Thanks!

Questions?

[^0]: [1] Shadish, W. R., Cook, T. D., \& Campbell, D. T. (2002). Experimental and quasi-experimental designs for generalized causal inference.

